maximum-absolute-sum-of-any-subarray 1.0.0
Maximum Absolute Sum of Any Subarray
Loading...
Searching...
No Matches
  1. Maximum Absolute Sum of Any Subarray

Difficulty

Medium

Question

You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).

Return the maximum absolute sum of any (possibly empty) subarray of nums.

Note that abs(x) is defined as follows:

If x is a negative integer, then abs(x) = -x.
If x is a non-negative integer, then abs(x) = x.

Example 1:

Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.

Example 2:

Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.

Constraints:

1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4

Link

Maximum Absolute Sum of Any Subarray

Solution

Solution implements Kadane's algorithm for finding max and min sum and then returns maximum of their absolute values.